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Abstmcl: The novel monocyclic dienediync 2. which is a simplified analogae of the neocBninostatin chromophore (1). 
was synthesized from D-xylitol viu conversian of the ke@-aldehyde 13 into Ihe highly strained lO-meanbacd ring canpound 
14 by a simple in%amolecular aklol cot&n&on as the key step. Ihe mode of cycloammadzation of 2 by a thiol addition, 
reminiscent of the chemiskry of 1, was also demonsuued. 

The neocarzinostatin cbromophore (l)lJ is the labile heart of neocarziuostatin, which is an antitumor 

antibiotic isolated from Streptomyces uwimsmicus by Ishida et al. in 1%Zi3. and plays a significant role iu the 

biological activity of neocaninostatin. 2*4 The bicyclic moiety of 1 containing the dienediyue system is now 

recognized to be responsible for the DNA damaging properties. 58 Because of the stimulant biological 

background and the unique structure of 1, many groups have focused on the synthesis of the core units M the 

analogues of 1.7 From 8 synthetic standpoint, complex methods wem generally required fm construction of the 

highly strained medium membered ring smwure. Furthermore, synthesis and mode of action of a monocyclic 

system containing a dienediyne function were rarely studied. In this communication, we wish to report the 

synthesis of a novel IO-membered monocyclic dienediyne compound 2, which is a highly simplified analogue 

of the neocarzinostatin chromophore (l), by a simple intramolecular aldol condensation and its 

cycloammatization ptufile by a thiol addition related to the mode of action of 1 in the DNA cleaving activity. 

D-Xylitol 3 was selected as a cheap and readily available starting material for this synthesis. The 

primary alcohols of 3 were selectively protected with pivaloyl groups (2.5 equiv. PvCl, Py, 26”C, 15h) to give 
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48 in 58% yield. The trio1 4 was converted into the diol 68 by standard manners in two steps (i. 4.5 equiv. 

TBSCI, 5.0 equiv. imidazole, DMF, 80°C. 12h, 95%; ii. 4.3 equiv. DIBAL, PhMe, -78T, 4Omin, 96%) in 

91% overall yield. Swem oxidation (3.0 equiv. (COCl)2, 4.0 equiv. DMSO, 10 equiv. Et3N, CH2Cl2, 

-78+O*C, 1Sh) of 6, followed by bromo-olefination of the resulting crude dialdehyde 7 by Corey’s method9 

(4.0 equiv. CBr4. 8.0 equiv. PPh3, CH2C12, O°C, OSh) gave the tetrabromide 88 in 97% overall yield. The 

tetrabromo compound 8 was treated with 6.0 equiv. of n-BuLi /hexane in THF at 0°C for 15min and then 10 

equiv. of ClCOOMe at ODC for 1Omin to give 98 in 86% yield Reduction of the methyl ester of 9 with 3.0 

equiv. of DIBAL in toluene at -78&C for 0.5h afforded the &sit& mono-aldehyde 10’3 (45%) and the diol 

118 (38%). the latter of which was selectively converted into 10 by the Dess-Martin oxidation*0 (0.8 equiv 

Dess-Martin periodinane. CH2Cl2, OOC, OSh. 53%). The Grignard reaction (4.5 equiv. MeMgBr, ether, 25’C. 

IOmin, 95%) of IO afforded 128 which was subjected to the Dess-Martin oxidation (3.2 equiv. Dess-Martin 

periodinane, CH2Cl2,26”C, 45min, 99%) to give the keto-aldehyde 138 in 94% overall yield from 10. The 

key one-step conversion of 13 into the highly strained cyclic system was best effected by using 2.0 equiv. of 

l.OM LiOH in EtOH (0.005 M for 13) at 26OC for 3h to afford the monocyclic product 148 [MS-C1 m/z 535 

(M+H+)] and the dime* [MS-C1 m/z 1069 (M+H+)) in 38% and 17% yields, respectively. Notably, the lo- 

membered ring keto-enediyne compound 14 was found to be stable in air or ambient light at Toom temperature. 

Although the Wittig reaction using Ph3P=CH2 and the Homer-Emmons reaction using (MeO)2P(O)Me and 

base were tried to introduce an olefinic function onto 14, both attempts failed because of the low reactivity of 

the highly conjugated ketone of 14. The desired dienediyne system of 168 was obtained in two steps via 
dehydration of I58 (i. 2.2 equiv. MeLi, ether, O’C, Khnin, ii. 4.0 equiv. M&l, 8.0 equiv. Et3N, CH2C12, 

O’C, 20 min) in 57% overall yield. Finally, the dienediyne compound 2% having good leaving groups, acetyl 

groups, at suitable position for the cyclization using a thiol was synthesized by standard desilylation following 
acetylation (3.3 equiv. TBAF, THF, O°C, 30min and then 6.0 equiv. Ac20, 8.0 equiv. Et3N, 0.1 equiv. 4- 

DMAP, 46%) without isolation of the extremely unstable trio1 17. Compaxed with the high stability of 14, the 

IO-membered ring dienediyne compounds 2 and 16 were considerably unstable especially when kept neat. 

Addition of methyl thioglycolate (3.0 equiv.) to 2 in the presence of uiethylamine (1.0 equiv.) in MeOH 

at 26’C for lh gave the benzenoid products 208 and 218 in 11.8% and 4.8% yields, respectively.*1 A similar 

experiment conducted in deuteriated solvent, MeOH-&, afforded 20 and 21 with the indicated levels of 

deuterium incorporation. Although the mechanism of the production of 20 is not definite,12 the formation of 

21 clearly suggest that the monocyclic dienediyne 2 undergoes an addition of thiol to produce the enyne- 

cumulene 18, which proceeds the cycloaromatization leading to the diradical 19. The intermediate 19 

undergoes a particularly effective intramolecular hydrogen atom transfer from the methylene group of the 

methyl thioglycolate moiety.13 

In conclusion, the present work shows not only the synthesis of a novel monocyclic dienediyne system 

related to the neucarzinostatin chromophore but also its mode of action by a thiol addition. Our results 

demonstrate that even such a simple monocyclic model containing a dienediyne system has the ability to 

produce the benzenoid product. Considering the proposed mechanism of DNA cleavage by the neocaninostatin 

chromophore (1),5.6 2 has an indispensable suuctux and chemical property for this purpose. The evolution of 

the biological activity of 2 and its analogues is now in progress. 
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